Kamis, 16 Desember 2010

CAHAYA SEBAGAI GELOMBANG ELEKTROMAGNETIK

  • CAHAYA
Cahaya adalahenergi berbentuk gelombang elektromagnetik yang kasat mata dengan panjang gelombang sekitar 380–750 nm. Pada bidang fisika, cahaya adalah radiasi elektromagnetik, baik dengan panjang gelombang kasat mata maupun yang tidak.

  • DISPERSI CAHAYA
Gejala dispersi cahaya adalah gejala peruraian cahaya putih (polikromatik) menjadi cahaya berwarna-warni (monokromatik). Cahaya putih merupakan cahaya polikromatik, artinya cahaya yang terdiri atas banyak warna dan panjang gelombang. Jika cahaya putih diarahkan ke prisma, maka cahaya putih akan terurai menjadi cahaya merah, jingga, kuning, hijau, biru, nila, dan ungu. Cahaya-cahaya ini memiliki panjang gelombang yang berbeda. Setiap panjang gelombang memiliki indeks bias yang berbeda. Semakin kecil panjang gelombangnya semakin besar indeks biasnya. Disperi pada prisma terjadi karena adanya perbedaan indeks bias kaca setiap warna cahaya. Perhatikan Gambar 2.1.

DispersiDispersiDispersi
Gambar 2.1. Dispersi cahaya pada prisma
Seberkas cahaya polikromatik diarahkan ke prisma. Cahaya tersebut kemudian terurai menjadi cahaya merah, jingga, kuning, hijau, biru, nila, dan ungu. Tiap-tiap cahaya mempunyai sudut deviasi yang berbeda. Selisih antara sudut deviasi untuk cahaya ungu dan merah disebut sudut dispersi. Besar sudut dispersi dapat dituliskan sebagai berikut:
Φ = δu - δm = (nu – nm) β .......................................2.1

Keterangan:
Φ = sudut dispersi
nu = indeks bias sinar ungu
nm = indeks bias sinar merah
δu = deviasi sinar ungu
δm=deviasi sinar merah

Penerapan Dispersi:
Contoh peristiwa dispersi pada kehidupan sehari-hari adalah pelangi. Pelangi hanya dapat kita lihat apbila kita membelakangi matahari dan hujan terjadi di depan kita. Jika seberkas cahaya matahari mengenai titik-titik air yang besar, maka sinar itu dibiaskan oleh bagian depan permukaan air. Pada saat sinar memasuki titik air, sebagian sinar akan dipantulkan oleh bagian belakang permukaan air, kemudian mengenai permukaan depan, dan akhirnya dibiaskan oleh permukaan depan. Karena dibiaskan, maka sinar ini pun diuraikan menjadi pektrum matahari.Peristiwa inilah yang kita lihat di langit dan disebut pelangi. Bagan terjadinya proses pelangi dapat dilihat pada Gambar 2.2.
Gambar 2.2. Proses terjadi pelangi

  • INTERFERENSI CAHAYA
Interferensi adalah paduan dua gelombang atau lebih menjadi satu gelombang baru. Jika kedua gelombang yang terpadu sefase, maka terjadi interferensi konstruktif (saling menguatkan). Gelombang resultan memiliki amplitudo maksimum. Jika kedua gelombang yang terpadu berlawanan fase, maka terjadi interferensi destruktif (saling melemahkan). Gelombang resultan memiliki amplitudo nol. Setiap orang dengan menggunakan sebuah baskom air dapat melihat bagaimana interferensi antara dua gelombang permukaan air dapat menghasilkan pola-pola bervariasi yang dapat dilihat dengan jelas. Dua orang yang bersenandung dengan nada-nada dasar yang frekuensinya berbeda sedikit akan mendengar layangan (penguatan dan pelemahan bunyi) sebagai hasi interferensi  (akan dibahas pada Bab 3).

Warna-warni pelangi menunjukkan bahwa sinar matahari adalah gabungan dari berbagai macam warna dari spektrum kasat mata. Di lain fihak, warna pada gelombang sabun, lapisan minyak, warna bulu burung merah, dan burung kalibri bukan disebabkan oleh pembiasan. Hal ini terjadi karena interferensi konstruktif dan destruktif dari sinar yang dipantulkan oleh suatu lapisan tipis. Adanya gejala interferensi ini bukti yang paling menyakinkan bahwa cahaya itu adalah gelombang. Interferensi cahaya bisa terjadi jika ada dua atau lebih berkas sinar yang bergabung. Jika cahayanya tidak berupa berkas sinar, maka interferensinya sulit diamati. Interferensi cahaya sulit diamati karena dua alasan:
(1)   Panjang gelombang cahaya sangat pendek, kira-kira 1% dari lebar rambut.
(2) Setiap sumber alamiah cahaya memancarkan gelombang cahaya yang fasenya sembarang (random) sehingga interferensi yang terjadi hanya dalam waktu sangat singkat.
Jadi, interferensi cahaya tidaklah senyata seperti interferensi pada gelombang air atau gelombang bunyi. Interferensi terjadi jika terpenuhi dua syarat berikut ini:
(1)   Kedua gelombang cahaya harus koheren, dalam arti bahwa kedua gelombang cahaya harus memiliki beda fase yang selalu tetap, oleh sebab itu keduanya harus memiliki frekuensi yang sama.
(2)   Kedua gelombang cahaya harus memiliki amplitude yang hampir sama.
Terjadi dan tidak terjadinya interferensi dapat digambarkan seperti pada Gambar 2.3.
Gambar 2.3. (a) tidak terjadi interferensi, (b) terjadi interferensi
Untuk menghasilkan pasangan sumber cahaya kohern sehingga dapat menghasilkan pola interferensi adalah :
(1)    sinari dua (atau lebih) celah sempit dengan cahaya yang berasal dari celah tunggal (satu celah). Hal ini dilakukan oleh Thomas Young.
(2)    dapatkan sumber-sumber kohern maya dari sebuah sumber cahaya dengan pemantulan saja. Hal ini dilakukian oleh Fresnel. Hal ini juga terjadi pada pemantulan dan pembiasan (pada interferensi lapisan tipis).
(3)    Gunakan sinar laser sebagai penghasil sinar laser sebagai penghasil cahaya kohern.

Cahaya monokromatis dengan panjang gelombang 5000 A melewati celah ganda yang terpisah pada jarak 2 mm. Jika jarak celah layar 1 meter, tentukanlah jarak terang pusat dengan garis terang orde ketiga pada layar.
Penyelesaian:
Diketahui: d = 2 mm; l = 1 meter = 1 ´ 103 mm; λ = 5000 A = 5 ´ 10-4 mm; m = 3















  • DIFRAKSI CAHAYA
Pada pelajaran gerak gelombang, telah diperkenalkan pula bahwa gelombang permukaan air yang melewati sebuah penghalang berupa sebuah celah sempit akan mengalami lenturan (difraksi). Peristiwa yang sama terjadi jika cahaya dilewatkan pada sebuah celah yang sempit sehingga gelombang cahaya itu akan mengalami difraksi. Selain disebabkan oleh celah sempit, peristiwa difraksi juga dapat disebabkan oleh kisi. Kisi adalah sebuah penghalang yang terdiri atas banyak celah sempit. Jumlah celah dalam kisi dapat mencapai ribuan pada daerah selebar 1 cm. Kisi difraksi adfalah alat yang sangat berguna untuk menganalisis sumber-sumber cahaya. Perhatikan Gambar 2.8.
Gambar 2.8. Cahaya yang melewati celah sempit
Kita dapat melihat gejala difraksi ini dengan mudah pada cahaya yang melewati sela jari-jari yang kita rapatkan kemudian kita arahkan pada sumber cahaya yang jauh, misalnya lampu neon. Atau dengan melihat melalui kisi tenun kain yang terkena sinar lampu yang cukup jauh.
Pola difraksi yang disebabkan oleh celah tunggal dijelaskan oleh Christian Huygens. Menurut Huygens, tiap bagian celah berfungsi sebagai sumber gelombang sehingga cahaya dari satu bagian celah dapat berinterferensi dengan cahaya dari bagian celah lainnya.
Interferensi minimum yang menghasilkan garis gelap pada layar akan terjadi,
jika gelombang 1 dan 3 atau 2 dan 4 berbeda fase ½, atau lintasannya sebesar setengah panjang gelombang. Perhatikan Gambar 2.9.

Gambar 2.9. interferensi celah tunggal
Berdasarkan Gambar 2.9 tersebut, diperoleh beda lintasan kedua gelombang (d sin θ)/2.
ΔS = (d sin θ)/2 dan ΔS = ½ λ, jadi d sin θ = λ
Jika celah tunggal itu dibagi menjadi empat bagian, pola interferensi minimumnya menjadi
ΔS = (d sin θ)/4 dan ΔS = ½ λ, jadi d sin θ = 2 λ.
Berdasarkan penurunan persamaan interferensi minimum tersebut, diperoleh persamaan sebagai berikut.
d sin θ = mλ                                                       2.13
dengan: d = lebar celah
m = 1, 2, 3, . . .
Untuk mendapatkan pola difraksi maksimum, maka setiap cahaya yang melewati celah harus sefase. Beda lintasan dari interferensi minimum tadi harus dikurangi dengan sehingga beda fase keduanya mejadi 360°. Persamaan interferensi maksimum dari pola difraksinya akan menjadi :

..........................................2.14
Dengan (2m – 1) adalah bilangan ganjil, m = 1, 2, 3, …
Untuk pola difraksi maksimum, tentukanlah beda celah minimum yang dibutuhkan pada difraksi celah tunggal bila diinginkan sudut difraksinya 30°, dan panjang gelombang yang digunakan 500 nm.

Penyelesaian:
Dengan menggunakan persamaan (2.14), diperoleh

d mencapai minimum jika m = 1

Jadi, lebar celah minimum 500 nm.


  • POLARISASI CAHAYA
Polarisasi gelombang hanya dapat terjadi pada gelombang transversal, tidak terjadi pada gelombang longitudinal. Untuk mengetahui apa yang dimaksud dengan peristiwa polarisasi, perhatikan gelombang tali pada Gambar 2.13.
Gambar 2.13. Gelombang tali yang terpolarisasi
Sebelum dilewatkan pada celah sempit vertical, tali bergetar dengan simpangan seperti spiral. Setelah gelombang pada tali melewati celah, hanya arah getar vertical yang masih tersisa. Adapun arah getar horizontal atu diserap oleh celah sempit itu. Gelombang yang keluar dari celah tadi disebut gelombang polarisasi, lebih khusus disebut terpolarisasi linier.
Terpolarisasi artinya memiliki satu arah getar tertentu saja. Polarisasi yang hanya terjadi pada satu arah disebut polarisasi linear. Apa yang terjadi jika celah sempit dipasang secara horizontal? Apakah terjadi polarisasi linear?
Cahaya terpolarisasi dapat diperoleh dari cahaya tidak terpolarisasi, yaitu dengan menghilangkan (memindahkan) semua arah getar dan melewatkan salah satu arah getar saja. Ada 4 cara untuk melakukan hal ini, yaitu: 1) penyerapan selektif, 2) pemantulan, 3) pembiasan ganda, dan 4) hamburan.

CONTOH SOAL
Seberkas cahaya alamiah dilewatkan pada dua keping kaca polaroid yang arah polarisasi satu sama lain membentuk sudut 60°. Jika intensitas cahaya alamiahnya 100 Wcm-2, tentukanlah intensitas cahaya yang telah melewati cahaya polaroid itu.
Penyelesaian:
Dengan menggunakan persamaan (2.19) diperoleh


Jadi, intensitas cahaya yang dilewatkan 12,5 Wcm-2.

Tidak ada komentar:

Posting Komentar