Kamis, 28 Januari 2010

HUBUNGAN GERAK TRANSLASI DAN GERAK ROTASI

HUBUNGAN GERAK TRANSLASI DENGAN GERAK ROTASI
Gerakan Translasi
Gerak Rotasi
Hubungannya
Pergeseran Linier
S
Pergeseran Sudut
q
S = q . R
Kecepatan Linier
v = ds/dt
Kecepatan Sudut
w = dq/dt
v = w . R
Percepatan Linier
a = dv/dt
Percepatan Sudut
a = dw/dt
a = a . R
Gaya
F = m.a
Momen Gaya (Torsi)
t = I a
t = F . R
Energi Kinetik
Ek = ½ m v2
Energi Kinetik
Ek = ½ I w2
-
Daya
P = F.v
Daya
P = t w
-
Momentum Linier
P = m.v
Momentum Sudut
L = P R
L = P R
Usaha
W = F.s
Usaha
W = t q
-

MOMEN INERSIA

MOMEN INERSIA

Momen Inersia merupakan hasil kali antara massa partikel itu (m) dengan kuadrat jarak tegak lurus dari sumbu rotasi ke partikel (r2). Untuk mudahnya, bandingkan dengan gambar di atas.

Secara matematis, momen inersia partikel dirumuskan sebagai berikut :

momen-inersia-g


Momen Inersia Benda Tegar

Secara umum, Momen Inersia setiap benda tegar bisa dinyatakan sebagai berikut :

momen-inersia-h

Macam Momen Inersia beberapa benda tegar.

Momen Inersia Benda-Benda yang Bentuknya Beraturan

Selain bergantung pada sumbu rotasi, Momen Inersia (I) setiap partikel juga bergantung pada massa (m) partikel itu dan kuadrat jarak (r2) partikel dari sumbu rotasi. Total massa semua partikel yang menyusun benda = massa benda itu. Persoalannya, jarak setiap partikel yang menyusun benda tegar berbeda-beda jika diukur dari sumbu rotasi.

momen-inersia-0



Cincin tipis berjari-jari R,

bermassa M dan lebar L (sumbu rotasi terletak di tengah-tengah salah satu diameter)

momen-inersia-2amomen-inersia-2b

Cincin tipis berjari-jari R, bermassa M dan lebar L

(sumbu rotasi terletak pada salah satu garis singgung)

momen-inersia-3amomen-inersia-3b

Silinder berongga,

dengan jari-jari dalam R2 dan jari-jari luar R1

momen-inersia-4amomen-inersia-5b

Silinder padat

dengan jari-jari R (sumbu rotasi terletak pada sumbu silinder)

momen-inersia-5a

momen-inersia-4b

Silinder padat dengan jari-jari R

(sumbu rotasi terletak pada diameter pusat)

momen-inersia-6amomen-inersia-6b

Bola pejal dengan jari-jari R

(sumbu rotasi terletak pada salah satu diameter)

momen-inersia-7amomen-inersia-7b

Kulit Bola dengan jari-jari R

(sumbu rotasi terletak pada salah satu diameter)

momen-inersia-8amomen-inersia-8b

Batang pejal yang panjangnya L

(sumbu rotasi terletak pada pusat )

momen-inersia-9amomen-inersia-9b

Batang pejal yang panjangnya L

(sumbu rotasi terletak pada salah satu ujung)

momen-inersia-10amomen-inersia-10b

Balok pejal yang panjangnya P dan lebarnya L

(sumbu rotasi terletak pada pusat; tegak lurus permukaan)

momen-inersia-11amomen-inersia-11b


Soal :

Sebuah partikel bermassa 2 kg diikatkan pada seutas tali yang panjangnya 0,5 meter (lihat gambar di bawah). Berapa momen Inersia partikel tersebut jika diputar ?

momen-inersia-13

jawab :

I = mr2

I = (2 kg) (0,5m)2

I = 0,5 kg m2


Soal :

Empat partikel, masing-masing bermassa 2 kg dihubungkan oleh batang kayu yang sangat ringan dan membentuk segiempat (lihat gambar di bawah). Tentukan momen inersia gabungan keempat partikel ini, jika mereka berotasi terhadap sumbu seperti yang ditunjukkan pada gambar (massa kayu diabaikan).

momen-inersia-171

Momen iInersia gabungan dari keempat partikel ini (dianggap satu sistem) mudah dihitung. Jarak masing-masing partikel dari sumbu rotasi sama (rA = rB = rC = rD = 1 meter). Jarak AC = BD = 4 meter tidak berpengaruh, karena yang diperhitungkan hanya jarak partikel diukur dari sumbu rotasi.

I = mr2

I = (2 kg)(1 m)2

I = 2 kg m2

Karena IA = IB = IC = ID = I, maka momen inersia (I) total :

I = 4(I)

I = 4(2 kg m2)

I = 8 kg m2

MOMEN GAYA

MOMEN GAYA

MOMEN GAYA ( t ) adalah gaya kali jarak/lengan. Arah gaya dan arah jarak harus tegak lurus.

Pada gerak lurus atau gerak translasi, faktor yang menyebabkan adanya gerak adalah gaya (F). Sedangkan pada gerak rotasi atau gerak melingkar, selain gaya (F), ada faktor lain yang menyebabkan benda itu bergerak rotasi yaitu lengan gaya (l) yang tegak lurus dengan gaya.

Secara matematis, momen gaya dirumuskan

τ = F x l

τ = F . l

Jika antara lengan gaya l dan gaya F tidak tegak lurus maka

τ = F . l sin θ

dimana θ adalah sudut antara lengan gaya l dengan gaya F.

Lengan gaya merupakan jarak antara titik tumpuan atau poros ke titik dimana gaya itu bekerja. Jika gaya dikenakan berada di ujung lengan maka bisa kita katakan lengan gaya ( l ) sama dengan jari-jari lingkaran (r).

Sehingga momen gaya dapat juga kita tulis

τ = F . r